Optimization and Evaluation of Hybrid PV/WT/BM System in Different Initial Costs and LPSP Conditions
نویسندگان
چکیده
A modelling and optimization study was performed to manage energy demand of a faculty in Karabuk University campus area working with a hybrid energy production system by using genetic algorithm (GA). Hybrid system consists of photovoltaic (PV) panels, wind turbines (WT) and biomass (BM) energy production units. Here BM is considered as a back-up generator. Objective function was constituted for minimizing total net present cost (TNPC) in optimization. In order to obtain more accurate results, measurements were performed with a weather station and data were read from an electricity meter. The system was also checked for reliability by the loss of power supply probability (LPSP). Changes in TNPC and localized cost of energy (LCOE) were interpreted by changing LPSP and economic parameters such as PV investment cost, WT investment cost, BM investment cost, and interest rates. As a result, it was seen that a hybrid system consisted of PV and BM associated with an effective flow algorithm benefited from a GA meets the energy demand of the faculty. Keywords—photovoltaic (PV)/wind turbines (WT)/ biomass (BM); hybrid system; optimization; sizing; cost-effective; reliability; genetic algorithm
منابع مشابه
Modeling and sizing optimization of hybrid photovoltaic/wind power generation system
The rapid industrialization and growth of world’s human population have resulted in the unprecedented increase in the demand for energy and in particular electricity. Depletion of fossil fuels and impacts of global warming caused widespread attention using renewable energy sources, especially wind and solar energies. Energy security under varying weather conditions and the corresponding system ...
متن کاملOptimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...
متن کاملStructure Optimization of Stand-Alone Renewable Power Systems Based on Multi Object Function
This paper presents a methodology for the size optimization of a stand-alone hybrid PV/wind/diesel/battery system while considering the following factors: total annual cost (TAC), loss of power supply probability (LPSP), and the fuel cost of the diesel generator required by the user. A new optimization algorithm and an object function (including a penalty method) are also proposed; these assist...
متن کاملOptimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm
System power reliability under varying weather conditions and the corresponding system cost are the two main concerns for designing hybrid solar–wind power generation systems. This paper recommends an optimal sizing method to optimize the configurations of a hybrid solar–wind system employing battery banks. Based on a genetic algorithm (GA), which has the ability to attain the global optimum wi...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کامل